
Announcements Testing Strategies Abstract Data Types Validation

Software System Design and Implementation

Lecture 4: Testing Strategies, Abstract Data Types

Johannes Åman Pohjola
University of New South Wales

Term 2 2023

1



Announcements Testing Strategies Abstract Data Types Validation

Announcements

Assignment 01: Available since Sunday, due July 3.

Warning

While, you have almost two weeks left to complete the assignment,
a full solution will require a good bit of programming and thinking.
Start early!

2



Announcements Testing Strategies Abstract Data Types Validation

Motivation

We’ve seen how to prove and test properties of our programs.

But how do we come up with properties in the first place?!

Ideal: Come up with a test suite that guarantees full
correctness. I.e. if the tests pass, our specification is satisfied.

Reality: The more properties you test, the harder for a bug to
squeeze through.

3



Announcements Testing Strategies Abstract Data Types Validation

Motivation

We’ve seen how to prove and test properties of our programs.

But how do we come up with properties in the first place?!

Ideal: Come up with a test suite that guarantees full
correctness. I.e. if the tests pass, our specification is satisfied.

Reality: The more properties you test, the harder for a bug to
squeeze through.

4



Announcements Testing Strategies Abstract Data Types Validation

Motivation

We’ve seen how to prove and test properties of our programs.

But how do we come up with properties in the first place?!

Ideal: Come up with a test suite that guarantees full
correctness. I.e. if the tests pass, our specification is satisfied.

Reality: The more properties you test, the harder for a bug to
squeeze through.

5



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions I

A B

A

f

id
g

B A

B

g

id
f

The inverse of a function f is another function g that undoes
the operation of f .

For example, the function f x = x + 5 has the inverse
function g x = x - 5, since g (f x) = x.

Many non-mathematical examples: saving an object to disk
and (re)loading it; parsing a JSON string into an object then
printing it back as a JSON string.

6



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions I

A B

A

f

id
g

B A

B

g

id
f

The inverse of a function f is another function g that undoes
the operation of f .

For example, the function f x = x + 5 has the inverse
function g x = x - 5, since g (f x) = x.

Many non-mathematical examples: saving an object to disk
and (re)loading it; parsing a JSON string into an object then
printing it back as a JSON string.

7



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions I

A B

A

f

id
g

B A

B

g

id
f

The inverse of a function f is another function g that undoes
the operation of f .

For example, the function f x = x + 5 has the inverse
function g x = x - 5, since g (f x) = x.

Many non-mathematical examples: saving an object to disk
and (re)loading it;

parsing a JSON string into an object then
printing it back as a JSON string.

8



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions I

A B

A

f

id
g

B A

B

g

id
f

The inverse of a function f is another function g that undoes
the operation of f .

For example, the function f x = x + 5 has the inverse
function g x = x - 5, since g (f x) = x.

Many non-mathematical examples: saving an object to disk
and (re)loading it; parsing a JSON string into an object then
printing it back as a JSON string.

9



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions II

Whenever you have an invertible function f : T → S , you can
implement the inverse g : S → T , and write tests

prop_inverse_left :: T -> Bool

prop_inverse_left x = g (f x) == x

prop_inverse_right :: S -> Bool

prop_inverse_right x = f (g x) == x

These are often called encode/decode or round-tripping tests.

10



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions III

Round-tripping is a very powerful testing technique. It can catch
a large variety of (even subtle) bugs in common scenarios such as:

Loading data from a SQL database to memory (and vice
versa),

Making API requests (e.g. transforming to and from JSON),

Parsing user input (say a date from the string "03 Jul

2023"), etc.

Issues:

Many functions are not invertible: for example, length.

You have to implement the inverse. You might not need the
inverse for anything else. Worst of all, sometimes the inverse
is much more difficult to compute than the function itself!
(show vs read)

11



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions III

Round-tripping is a very powerful testing technique. It can catch
a large variety of (even subtle) bugs in common scenarios such as:

Loading data from a SQL database to memory (and vice
versa),

Making API requests (e.g. transforming to and from JSON),

Parsing user input (say a date from the string "03 Jul

2023"), etc.

Issues:

Many functions are not invertible: for example, length.

You have to implement the inverse. You might not need the
inverse for anything else. Worst of all, sometimes the inverse
is much more difficult to compute than the function itself!
(show vs read)

12



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions III

Round-tripping is a very powerful testing technique. It can catch
a large variety of (even subtle) bugs in common scenarios such as:

Loading data from a SQL database to memory (and vice
versa),

Making API requests (e.g. transforming to and from JSON),

Parsing user input (say a date from the string "03 Jul

2023"), etc.

Issues:

Many functions are not invertible: for example, length.

You have to implement the inverse. You might not need the
inverse for anything else. Worst of all, sometimes the inverse
is much more difficult to compute than the function itself!
(show vs read)

13



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions III

Round-tripping is a very powerful testing technique. It can catch
a large variety of (even subtle) bugs in common scenarios such as:

Loading data from a SQL database to memory (and vice
versa),

Making API requests (e.g. transforming to and from JSON),

Parsing user input (say a date from the string "03 Jul

2023"), etc.

Issues:

Many functions are not invertible: for example, length.

You have to implement the inverse. You might not need the
inverse for anything else. Worst of all, sometimes the inverse
is much more difficult to compute than the function itself!
(show vs read)

14



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions IV

An ideal case (that occurs surprisingly frequently) is when a
function is its own inverse. Take for example

reverse :: String -> String

not :: Bool -> Bool

Definition

An involution is a function f that is its own inverse, i.e.,
f (f x) = x for all x.

Advantage: You don’t have to implement the inverse separately.
Whenever you a have a function f : T → T , you should at least
think about whether it might be an involution.

15



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions IV

An ideal case (that occurs surprisingly frequently) is when a
function is its own inverse. Take for example

reverse :: String -> String

not :: Bool -> Bool

Definition

An involution is a function f that is its own inverse, i.e.,
f (f x) = x for all x.

Advantage: You don’t have to implement the inverse separately.
Whenever you a have a function f : T → T , you should at least
think about whether it might be an involution.

16



Announcements Testing Strategies Abstract Data Types Validation

Invertible Functions IV

An ideal case (that occurs surprisingly frequently) is when a
function is its own inverse. Take for example

reverse :: String -> String

not :: Bool -> Bool

Definition

An involution is a function f that is its own inverse, i.e.,
f (f x) = x for all x.

Advantage: You don’t have to implement the inverse separately.
Whenever you a have a function f : T → T , you should at least
think about whether it might be an involution.

17



Announcements Testing Strategies Abstract Data Types Validation

Idempotence I

A A

A

f

f
f

We say that an operation is idempotent if performing it twice
yields the same result as performing it just once.

Examples:

After sorting a list (sort), sorting it again won’t change the
result.

After removing duplicates from the list (nub), removing
duplicates from the result will yield the same thing.

Taking absolute values: abs (abs (-5)) = abs 5 = 5.

Calling an elevator: pressing the button twice has the same
result as pressing it just once.

Demo: filter twice

18



Announcements Testing Strategies Abstract Data Types Validation

Idempotence I

A A

A

f

f
f

We say that an operation is idempotent if performing it twice
yields the same result as performing it just once.
Examples:

After sorting a list (sort), sorting it again won’t change the
result.

After removing duplicates from the list (nub), removing
duplicates from the result will yield the same thing.

Taking absolute values: abs (abs (-5)) = abs 5 = 5.

Calling an elevator: pressing the button twice has the same
result as pressing it just once.

Demo: filter twice
19



Announcements Testing Strategies Abstract Data Types Validation

Idempotence II

Whenever you expect a function f : T → T to be idempotent, you
can write tests

prop_idempotent :: T -> Bool

prop_idempotent x = f (f x) == f x

Convenient and easy (no need to implement anything else) but has
a disadvantage:

Invertibility usually means high likelihood of full correctness: it
only fails if you made the same mistake twice. Idempotence
does not give good guarantees of full correctness by itself.

20



Announcements Testing Strategies Abstract Data Types Validation

Idempotence II

Whenever you expect a function f : T → T to be idempotent, you
can write tests

prop_idempotent :: T -> Bool

prop_idempotent x = f (f x) == f x

Convenient and easy (no need to implement anything else) but has
a disadvantage:

Invertibility usually means high likelihood of full correctness: it
only fails if you made the same mistake twice. Idempotence
does not give good guarantees of full correctness by itself.

21



Announcements Testing Strategies Abstract Data Types Validation

Invariants I

A A

B

f

g
g

Whenever performing some kind of operation f does not change a
given property g of the object, we say that g is an invariant of f .
Examples:

The length of a list does not change after a map operation.

The contents of a list do not change after a sort operation.

22



Announcements Testing Strategies Abstract Data Types Validation

Invariants II

Whenever you expect a function f : T → T to preserve an
invariant g : T → S , you can write tests

prop_invariant :: T -> Bool

prop_invariant x = g (f x) == g x

23



Announcements Testing Strategies Abstract Data Types Validation

Hard to Find, Easy to Test

Often it’s much harder to find a solution than to test that it’s
actually correct. Demo: prime factors of the integer
4294574089 are [13, 71, 923, 5041]

24



Announcements Testing Strategies Abstract Data Types Validation

Data Invariants

One source of properties is data invariants.

Data Invariants

Data invariants are properties that pertain to a particular data
type.
Whenever we use operations on that data type, we want to know
that our data invariants are maintained.

Example

That a list of words in a dictionary is always in sorted order
(cf. A1)

That a binary tree satisfies the search tree properties.
(cf. practice problems)

That a date value will never be invalid (e.g. 31/13/2019).

25



Announcements Testing Strategies Abstract Data Types Validation

Properties for Data Invariants

For a given data type X, we define a wellformedness predicate

wf :: X→ Bool

For a given value x :: X, wf x returns true iff our data invariants
hold for the value x .

Properties

For each operation, if all input values of type X satisfy wf, all
output values will satisfy wf.
In other words, for each constructor operation c :: · · · → X, we
must show wf (c · · · ), and for each update operation u :: X→ X

we must show wf x =⇒ wf(u x)

26



Announcements Testing Strategies Abstract Data Types Validation

Stopping External Tampering

What’s to stop a malicious or clueless programmer from going in
and mucking up our data invariants?

Example

If we have an Email datatype, which is supposed to only contain
valid emails, we can still construct an invalid email directly: Email

"INVALID".

We want to prevent this sort of thing from happening. For this, we
need modules and abstract data types.

27



Announcements Testing Strategies Abstract Data Types Validation

Structure of a Module

A Haskell program will usually be made up of many modules, each
of which exports one or more data types.
Typically a module for a data type X will also provide a set of
functions, called operations, on X.

• to construct the data type: c :: · · · → X

• to query information from the data type: q :: X→ · · ·
• to update the data type: u :: · · · → X→ X

28



Announcements Testing Strategies Abstract Data Types Validation

Abstract Data Types

In general, abstraction is the process of eliminating detail.

The inverse of abstraction is called refinement.

Abstract data types are abstract in the sense that their
implementation details are hidden, and we no longer have to
reason about them on the level of implementation.

29



Announcements Testing Strategies Abstract Data Types Validation

Validation

Suppose we had a sendEmail function

sendEmail :: String -- email address

-> String -- message

-> IO () -- action (more in 2 wks)

It is possible to mix the two String arguments, and even if we get
the order right, it’s possible that the given email address is not
valid.

Question

Suppose that we wanted to make it impossible to call sendEmail
without first checking that the email address was valid.
How would we accomplish this?

30



Announcements Testing Strategies Abstract Data Types Validation

Validation ADTs

We could define a tiny ADT for validated email addresses, where
the data invariant is that the contained email address is valid:

module EmailADT(Email, checkEmail, sendEmail)

newtype Email = Email String

checkEmail :: String -> Maybe Email

checkEmail str | '@' `elem` str = Just (Email str)

| otherwise = Nothing

Then, change the type of sendEmail:

sendEmail :: Email -> String -> IO()

The only way (outside of the EmailADT module) to create a value
of type Email is to use checkEmail.
checkEmail is an example of what we call a smart constructor: a
constructor that enforces data invariants.

31



Announcements Testing Strategies Abstract Data Types Validation

Validation ADTs

We could define a tiny ADT for validated email addresses, where
the data invariant is that the contained email address is valid:

module EmailADT(Email, checkEmail, sendEmail)

newtype Email = Email String

checkEmail :: String -> Maybe Email

checkEmail str | '@' `elem` str = Just (Email str)

| otherwise = Nothing

Then, change the type of sendEmail:

sendEmail :: Email -> String -> IO()

The only way (outside of the EmailADT module) to create a value
of type Email is to use checkEmail.
checkEmail is an example of what we call a smart constructor: a
constructor that enforces data invariants.

32



Announcements Testing Strategies Abstract Data Types Validation

Validation ADTs

We could define a tiny ADT for validated email addresses, where
the data invariant is that the contained email address is valid:

module EmailADT(Email, checkEmail, sendEmail)

newtype Email = Email String

checkEmail :: String -> Maybe Email

checkEmail str | '@' `elem` str = Just (Email str)

| otherwise = Nothing

Then, change the type of sendEmail:

sendEmail :: Email -> String -> IO()

The only way (outside of the EmailADT module) to create a value
of type Email is to use checkEmail.

checkEmail is an example of what we call a smart constructor: a
constructor that enforces data invariants.

33



Announcements Testing Strategies Abstract Data Types Validation

Validation ADTs

We could define a tiny ADT for validated email addresses, where
the data invariant is that the contained email address is valid:

module EmailADT(Email, checkEmail, sendEmail)

newtype Email = Email String

checkEmail :: String -> Maybe Email

checkEmail str | '@' `elem` str = Just (Email str)

| otherwise = Nothing

Then, change the type of sendEmail:

sendEmail :: Email -> String -> IO()

The only way (outside of the EmailADT module) to create a value
of type Email is to use checkEmail.
checkEmail is an example of what we call a smart constructor: a
constructor that enforces data invariants.

34


	Announcements
	

	Testing Strategies
	

	Abstract Data Types
	

	Validation

